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Summary. 
 
Deprivation is recognised as an important factor in determining the likelihood of mortality following 
infection with COVID-19, with several studies pointing to both demographic and health-related 
indices as having a role in placing a higher burden on deprived areas. However, disentangling factors 
related to transmission dynamics (influencing who becomes infected) and those related to health 
(increased mortality once infection has occurred) is difficult, due to uncertainty regarding the 
underlying infection rates, and strong associations across multiple indices that potentially influence 
both. Here, we use an individual-based model of COVID-19 to evaluate the role of deprivation in the 
Scotland COVID-19 epidemic, where data on deprivation are available at a high geographical 
resolution.   
 
The Scotland Coronavirus Model (SCoVMod) is an agent-based simulation of COVID-19 spread that 
utilises descriptions of individual-level activity to propagate infection across a virtual national 
landscape. At it operates at the individual level with individual level movement, it directly accounts 
for phased changes in restrictions on movement, or the national level implications of changes in the 
person-to-person transmission rate. In this analysis, we consider the early epidemic in Scotland, 
fitting the model in the period from the week of the first COVID-19 related death (week ending 
March 15th) up to the week when lockdown restrictions were observed to have a substantial impact 
on disease reproduction numbers (week ending April 5th). We infer in the model the dependence of 
COVID-19 mortality rates on mean “Health Index” per Health Board (of which there are 14 in 
Scotland). We show that introducing reductions in commuter mobility consistent with published 
reports, and imposing a reduction in the reproduction rate consistent with observed estimates post 
April 5th, creates a trajectory consistent with the observed data until mid-May. Fitted cumulative 
mortality across Health Boards lie within 95% of simulations in all Health Boards where substantial 
infections occur. The best fit model shows a considerable influence of health index on mortality; the 
most likely impact is that the Health Board with the best index will have, on average, a reduction to 
approximately 30% of the mortality compared to the Health Board with the lowest health index. 
These results should aid in planning for possible future outbreaks, either as we move out of 
lockdown, or in a putative future COVID-19 epidemic.    
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1. Model overview/methods. 
 
A schematic overview of the model is presented in figure 1. Further details are provided in the 
following section.  
 

 
Figure 1. Overview of SCoVMod, including data assimilation, model development, model assessment and 
prediction. 

 
1.i. Compartmental model.  
 



 

 

SCoVMod considers key aspects of COVID-19 epidemiology, including a latent phase, mildly 
infectious and highly infectious individuals, hospitalisation, recovery and death, similar to models 
used for other investigations7,8. These epidemiological processes are embedded in a compartmental 
model, as described in the schematic of Figure 1. Within population units (in this case, Census 
output areas or OAs9,10) the model assumes homogeneous mixing. The infection model is embedded 
into a population movement structure which includes patterns of home and work contact. 
Individuals in infectious stages (and at varying ages) will have the potential to infect others when co-
located in the same OA at the same time (considering date and day/night patterns). Infection is then 
moved spatially according to a network-based model of commuter movement.  
 
We assume that while the death rates for all age classes are the same, recovery rates differ, 
resulting in age-dependent differences in final outcome (see Table 1 for supporting references). All 
exposed individuals are assumed to become infectious. It is assumed that the spatial patterns of 
infection are driven by commuter movements; i.e. transient movements between OAs lasting less 
than a day. We do not consider overnight shifts in location or introductions from outside Scotland 
beyond the impact on the initial seeding. Infection dynamics are simulated via a tau-leap algorithm 
using half day timesteps.11  
 
Because our analysis concentrates on the early stages of the epidemic, we make a number of 
simplifying assumptions regarding transmission pathways: infections in care homes are assumed to 
result in few additional infections outside of these locations, and are therefore not considered 
separately, with a similar assumption for hospitals.12 We assume that only adults contribute to 
commuter movement; in the daytime, the remaining proportion of adults and all young and elderly 
individuals are assumed to move primarily within their local OAs, which also account for non-work 
activities (e.g. interactions in shops). Commuting is restricted to healthy and exposed or mildly 
infected individuals; severely infected and hospitalised individuals do not commute.  
  
Additional reports show that deprivation is an important indicator of COVID-19 mortality13. 
Therefore in addition, we consider the role of deprivation by adjusting for health in the model. Here, 
we use these factors to drive regionally specific differences, allowing for health index adjusted 
mortality rates by health board.  
 
The equations for the complete model are provided in Appendix I.  
 

                                            
7 Arenas, A., Cota, W., Gómez-Gardenes, J., Gómez, S., Granell, C., Matamalas, J. T., ... & Steinegger, B. (2020). 
A mathematical model for the spatiotemporal epidemic spreading of COVID19. medRxiv. 
https://doi.org/10.1101/2020.03.21.20040022 
8 Di Domenico, L., Pullano, G., Sabbatini, C. E., Boëlle, P. Y., & Colizza, V. (2020). Expected impact of lockdown in 
Île-de-France and possible exit strategies. medRxiv. https://doi.org/10.1101/2020.04.13.20063933 
9 https://www.scotlandscensus.gov.uk/variables-classification/output-area-2011 
10https://www.nrscotland.gov.uk/files//geography/2011-census/geography-bckground-info-comparison-of-
thresholds.pdf  
11 Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. The 
Journal of chemical physics, 115(4), 1716-1733. https://doi.org/10.1063/1.1378322  
12 https://www.thelancet.com/lancet/article/s0140-6736(20)31100-4 
13 https://www.medrxiv.org/content/10.1101/2020.05.06.20092999v1.full.pdf 



 

 

 
Figure 2. Schematic of infection stages in SCoVMod. Individuals pass through stages post infection as 
described by arrows. Not all stages are obligatory for all infected individuals (e.g. some individuals 
recover without going to hospital). 

1.ii Data sources and generation of commuter movement patterns. 
 
The model population demographics, including patterns of commuting are all derived from census 
data. Combining data sources creates a network of interactions of OAs across all of Scotland (see 
figure 3). Full details of movement pattern generation are found in appendix II.  
 
 

 
Figure 3. Commuter movement patterns, with commuters aggregated by output area (OA; Census areas with typically 50-
500 individuals; maximum of 2081). Data according to the 2011 census. (L) mean distance travelled from OA in km. and (R) 
mean number of OA's to which each OA is connected to. The greatest distances are travelled on average by individuals in 
remote locations. The greatest network degree is found in highly urbanised areas.  

 
1.iii Model Inference and Computational Background. 
The population structure, movement patterns and the infection model are used to generate 
simulated epidemics which iterate over half-day increments to simulate two types of contact, non-



 

 

commuting/home locations, and locations where commuting individuals interact. Homogenous 
mixing at the OA level is assumed. Simulated epidemics are compared in space and time to the 
recorded pattern of COVID-19 spread in Scotland.  
 
All population and statistics on COVID-19 deaths are drawn from National Records Scotland (NRS) 
using the table of registered deaths.14 The number and geographical distribution of individuals 
tested for COVID-19 in Scotland were not available at point of this analysis and was likely to have 
some biases, particularly in the earlier stages of COVID-19 spread. Also registration of deaths is 
required within 8 days of the event, introducing an uncertainty in the date of death for each case. In 
our inference, all non-observable or unknown parameters were therefore estimated using recorded 
figures for deaths due to COVID-19 related causes, considering all weeks beginning 9th March and 
ending on the 12th April 2020 and assuming that for each reported case, death occurs in the week 
prior to the registered week. As an evaluation of the full likelihood evaluation of the model would 
not be straightforward, estimation was performed using a sequential Monte Carlo implementation 
of Approximate Bayesian Computation (ABC- SMC).15,16 Summary statistics used for the inference 
were defined as the weekly number of deaths due to COVID-19, aggregated at the Health Board 
level (https://www.scot.nhs.uk/organisations/). The metric used to compare simulated and 
observed summary statistics was defined as a sum of squared errors (SSE) of the number of deaths 
due to COVID-19, over the health board, recorded weekly: 
 

𝑠𝑐𝑜𝑟𝑒 = 	 ( 	(𝐷+,- − 𝐷/0+)2
344	5667+

	

Where: 
   𝐷+,-		= no. dead per health board simulated 
   	𝐷/0+		= no. dead per health board observed 

 
Uniform prior distributions were applied to parameters to constrain their values to ranges that are 
plausible based on the available literature relevant to the early, pre-lockdown period (Table 1). 
Infection statistics are taken from the weekly NRS statistics for deaths registered with COVID-19 
related causes17 – while these are the most complete available, they also differ slightly from other 
official sources which record the date of death, rather than the date of registration of death. 
  
The ABC-SMC inference requires 5x104 - 105 model simulation runs before model convergence. Each 
simulation takes approximately 2-3 minutes to run. The inference framework is run on a distributed 
application framework (Akka)18. Running Akka on a Cloud Computing IAAS infrastructure (Amazon 
AWS19) allows for rapid scaling upwards to 16Gb and 4 cores per computer node and outwards to 
200 compute nodes. In the inference framework each “generation” of the ABC-SMC therefore is 
complete in approximately 20-60 minutes, with the tolerance in the acceptance scheme usually 
stabilising after no more than 15 generation (indicating a ‘settled’ posterior estimate).   
 

                                            
14 NRS statistics: https://statistics.gov.scot/ 
15 e.g. Hartig, F., Calabrese, J.M., Reineking, B., Wiegand, T. & Huth, A. (2011) Statistical inference for stochastic 
simulation models – theory and application. Ecology Letters, 14, 816–827. 
16 Toni et al. “Approximate Bayesian computation scheme for parameter inference and model selection in 
dynamical systems”. ” J. Roy. Soc. Interface https://doi.org/10.1098/rsif.2008.0172 
17 https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/vital-events/general-
publications/weekly-and-monthly-data-on-births-and-deaths/deaths-involving-coronavirus-covid-19-in-
scotland  
18 https://akka.io 
19 https://aws.amazon.com 



 

 

The model code has been written using industry grade software engineering practices, i.e. Agile 
development for project task planning20, Test Driven Development (TDD)21, Pair programming and 
code reviews to produce unit tested, robust and reusable software components.  The majority of the 
code has been reviewed by a second software developer (the remaining review is ongoing).  

1.v Model Seeding 

Infected seed individuals are distributed according to observed case data. As case data represents 
chiefly severely symptomatic or hospitalised individuals, we assume those individuals are present in 
the population in the 5 days prior to the recorded date of observation. Recorded statistics for 
COVID-19 infections are evaluated here at the Health Board level; while some detail below this scale 
is available, in order to achieve summary statistics in the early stages, we use this approximate 
approach. We note that this approximate approach should capture the relative proportion of 
individuals per health board.  
 
1.vi Modelling Lockdown 

 
We propose that the impact of lockdown in our model can be modelled by a combination of two 
effects. First, the reduction in longer distance activity requires that we reduce the volume of 
commuter activity. For this we reduce it in a manner consistent with the observed decline seen in 
the Google mobility data22. We compared this to an independent dataset to corroborate the 
reduction in rural areas, where data are few (see appendix III). Second, social distancing will 
introduce a reduction in contact and therefore transmission rates, that will also be impacted by local 
‘saturation’ effects (due to clustering of contacts, such as would occur when all people in a 
household have greater contacts with each other, than outside). In order to consider this impact of 
lockdown, we note that the reproduction number of COVID-19 is independently estimated to be 
high and consistent until approximately April 6th, then drops below 1 with a reduction to 
approximately 0.30 of the original value 23; this is also consistent with an estimate of the impact of 
movement rate reduction in London in late March.24 We use this to reduce contact rates and 
therefore the transmission rates to 30% of the original value. 
 
1.vii Scottish Index of Multiple Deprivation (SIMD). 
 

Based on NRS Covid-19 data from week-18 (published 6thMay) complete up to 3rdMay, we examined 
the impact of different deprivation factors. We found that whilst deprivation overall (as measured by 
the Scottish Index of Multiple Deprivation) is significantly associated with increased Covid-19 
mortality this can be further disaggregated: 

1.    Population level risk of Covid-19 mortality is associated with the SIMD indicator that 
describes (good) accessibility and orthogonally with the SIMD indicator that describes 

                                            
20 Kent Beck; James Grenning; Robert C. Martin; Mike Beedle; Jim Highsmith; Steve Mellor; Arie van Bennekum; 
Andrew Hunt; Ken Schwaber; Alistair Cockburn; Ron Jeffries; Jeff Sutherland; Ward Cunningham; Jon Kern; Dave 
Thomas; Martin Fowler; Brian Marick (2001). "Manifesto for Agile Software Development". 
21 Beck, K., Test-Driven Development By Example, Addison- Wesley, Boston, MA, USA, 2003. 
22 Google Community Mobility Reports: https://www.google.com/covid19/mobility/ 
23 Covid-19: Framework for Decision Making, Further Information (published 23rd April, 2020), accessed 
11th May, 2020 https://www.gov.scot/publications/coronavirus-covid-19-framework-decision-making-
further-information/  
24 https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01597-8  



 

 

(poor) health. Indicating that areas with poorest health and good access experienced 
higher Covid-19 mortality. 

2.    Risk of excess Covid-19 mortality (Covid-19 deaths as a fraction of all deaths) is most 
closely associated with the access indicator component of SIMD. This indicates that the 
areas that have good local connectivity and transport will have higher rates of Covid-19 
transmission.  

We hypothesize that “access” is a proxy for transmission model dynamics in two ways; first, 
transmission rates in the model may be influenced by access (with greater access likely implying a 
higher probability of introduction of infection and therefore earlier introduction. Thus the observed 
differences in mortality overall is dependent on the time since introduction (and therefore the initial 
seeding plus transmission dynamics), and health. We therefore fit the health index (only) using a 
simple model: 

𝜇90 = 𝜇3: ∗ 𝑏 ∗ =1 + @
𝜅BC − 𝜅3:

𝜅3:
DE	

Where 𝜇90  is the COVID-19 related mortality rate for a given health board, 𝜇3:  Is the average across 
health boards, 𝜅BC  a is the health board mean health index value (from the SIMD), and “b” is a fitted 
parameter given a prior range of {0.0.75} in order to precludes negative values for low values of kHB. 

1.viii. Model Parameters – Priors for fitted parameters and values for configured parameters. 
 
Epidemiological parameters are based upon the extant literature, with studies that are 
epidemiological based and GB-centric informally preferred. A list of parameters (6 fitted, 7 
configured) in the model and their sources are found below in Table 1.  
 



 

 

Table 1. Epidemiological parameters in SCoVMod, with priors and fixed values as appropriate. Where age is not indicated, 
parameters are assumed not to be age dependent. References for parameters are found in Appendix IV. 

 
 

2. Results – parameter posterior values. References in table are found in a separate appendix 
(vi).  

 
Posterior parameter distributions are shown in figure 3. The univariate posteriors show substantial 
opinions across all parameters.  

Parameters Transition Symbol Age Central estimate Prior References

Latency period (days) E � IM 1/g All fitted U(2,28) 1-5

Time from mild infectiousness to 
recovery (days) IM � R 1/rM All fitted U(2,28) 2,5

Symptoms onset time after 
infectiousness (i.e. incubation period − 
latency period) (days)

IM � IS 1/gM All fitted U(2.5,28) 1-14

Transmission rate for severe infectors 
I S (baseline, daytime) S � E b d All fitted U(0,2) -

Transmission rate for severe infectors 
I S (baseline, nightime) S � E b N All fitted U(0,2) -

Transmission rate multiplier for mild 
infectors I M

S � E y All fitted U(0,1) -

Time from symptoms onset to 
hospitalization (days) IS � H 1/h All 4.00 -

6,7,10,12,13,
15-21

Young 19.00

Adults 20.70

Elderly 21.60

Time from hospitalization to recovery 
(days) H � R 1/rH All 12.35 - 8, 10,13,16

Time from symptoms onset to death 
(days) IS � D 1/µS All 16.00 -

10,12,15,16,
20,21

Time from hospitalization to death 
(days) H � D 1/µH All 9.70 - 6-8,10,12,16

-Time from symptoms onset to recovery 
(days) IS � R 1/rS 6,16



 

 

 
Figure 3. Posterior distributions of fitted parameters, from top L to lower R: (i) transition rate from 
exposed to mildly infectious (per half day), (ii) health index associate modifier (iii) recovery rate for 
mildly infectious individuals (per half day), (iv) transition rate from mildly infectious to severely 
infectious (per half day), (v) frequency dependent transmission rate for severely infectious individuals 
in “day” locations (per 5 severely infectious individuals, per half day), (vi) frequency dependent 
transmission rate for severely infectious individuals in “night” locations (per severely infectious, per 
half day), (vii) multiplier for mildly infectious individuals). Dotted line in each panel shows estimate of 
the posterior in the penultimate generation.  
 
2.ii Model Fit 
 
The fitted model is shown to reproduce the epidemic curve over the fitted period across most health 
boards (Figure 4) with good fidelity, with the exceptions being the Highlands (excess mortality over 
predicted) and Shetland (less mortality than expected in the model). 



 

 

 
Figure 4. Registered number of COVID-19 related deaths (red), median of 50 simulations (dotted line), and 80% and 95% 
C.I.’s (dark and light blue respectively), aggregated by Health Board.  

 



 

 

 
Figure 5. Distribution of simulation outcomes compared to the recorded number of COVID-19 related 
deaths as of 15th April 2020 (red dots).  

The total COVID-19 related deaths are shown for all health boards in Figure 4. Because the model 
uses a single set of parameters to describe all of Scotland (i.e. it is assumed that the disease is 
transmitted in the same way across Scotland subject to variation in population density, age and 
differences in commuter patterns), it is expected that there is some variation in the way the model 
fits the data. However, comparison to a model fit without the health index shows a substantially 
improved fit when it is included (not shown). The best fit model shows a considerable influence of 
health index on mortality; the most likely impact is that the Health Board with the highest index will 
have, on average, a reduction of approximately 7% in mortality compared to the Health Board with 
the lowest health index.	 
 
2.iii impact of lockdown on COVID-19 spread. 
 
Lockdown restrictions are likely to impact both the local spread of infection (via social distancing 
measures) and the spatial spread of infection (indirectly, social distancing means reductions in the 
number of long distance contact events). We illustrate the impact of lockdown on spatial spread, by 
considering the likely extent of disease should lockdown restrictions have been imposed two weeks 
prior to the actual date (23rd March 2020) which is approximately the time of the announcement of 
the first death due to COVID-19 in Scotland.   Using our approach to simulating the effect of 
lockdown, as seen in Figure 5, the trajectory of simulated mortality remains consistent with the 
observed mortality rate until April 27th (the last date for the available data at point of fitting). In this 
version, if we assume that the reproduction rate declines below one from two weeks after the 



 

 

imposition of lockdown (the same assumption as for the baseline scenario), we predict on average 
581 deaths (95% of simulations within 377 to 1010 deaths) by 26th April 2020, compared to 2722 
(range 1294 to 4050) in the baseline scenario (observed number is 2,795, assuming that all deaths 
occur in the week prior to the week the death is registered in). 
 

 
Figure 6. comparison of number of COVID-19 related deaths in early lockdown scenario (95% C.I. in green) to 
baseline (95% C.I. in blue). 

The reduction in numbers also results in a reduction in geographical spread with many fewer OAs 
affected by COVID-19 mortality in the early lockdown scenario (figure 6). While these do not 
represent actual directions of spread (as the inference uses health board level statistics, these sub-
health board level representations do not represent true distributions of cases) they serve to 
illustrate the role that movements between OAs play in the simulation.  
 



 

 

 
Figure 7. Mean number of deaths per OA, averaged over 50 simulations for early lockdown (L) and lockdown as 
it occurred (R). Deaths in Shetland shown in the inset with early lockdown at the top, and at bottom, as lockdown 
occurred. 

3. Discussion. 
 
In this report we to present the first description of the structure of SCoVMod, an individual-based 
model of COVID-19 spatio-temporal dynamics in Scotland. The model is shown to fit within acceptable 
limits over the course of the epidemic that is fitted, including when considering health board level 
statistics. To allow for the many simulations required for inference problems, the underlying 
population structure built into the current version of SCoVMod is fundamentally simple (though 
computationally intensive), with abstract work and home structures. The details of population 
structure is, however, implied in the model input and therefore is highly flexible to different scenarios. 
This allows, for example, for a much more detailed representation of home, work and recreation 
patterns, provided there are data to support this.  
 
By embedding within the model the health index, taken from the SIMD averaged over all health 
boards, we obtain a direct estimate of the additional mortality related to COVID-19 in deprived areas, 
and correcting for possible correlations between deprivation and transmission dynamics. This 
illustration needs to be further investigated by a deeper interrogation of more finely grained datasets 
however even with the relatively coarse grained scale of health boards, still show that mortality in the 
least deprived health board is approximately 30% of that in the most deprived. Such substantial 
differences, built into future models, will provide a much more refined assessment of potential health 
burdens and risks associated with geographical spread.  
 
By combining the impact of reduced work-related travel, with observations regarding reductions in 
the reproduction number of COVID-19. The two factors are of course not completely separable - 
reduction in long distance travel and social distancing measures go hand in hand. However our simple 
approach could be useful, for example, to strategically examine trade-offs between travel related 
restrictions, and social distancing when evaluating future releases from lockdown. The direct 
interpretation of the lockdown scenarios and in particular future projections must be viewed with 
some caution. The effectiveness of lockdown will vary in space and time, and due to reasons such as 
human behaviour (e.g. ‘lockdown fatigue”, or uncertainty over the exact control measures). On the 



 

 

other hand, reduced numbers of cases will reduce spread, and therefore logistical burden, with 
possibly more resources available and the burden on care homes, hospitals and ICUs reduced. These 
potentially counterbalancing factors would of course have to be considered in more detail however 
our comparison can form the basis of evaluation of the relative benefit of timing of restrictions.  
 
While this version of SCoVMod provides a useful environment to explore the implications of spatio-
temporal spread of COVID-19 (and by extension, other highly infectious viral diseases with substantial 
mortality), there are several extensions now under consideration, including improved age dependent 
contact, finer resolution scale with defined workplaces, and improved scaling of movement patterns 
to consider not just changes in volume but also distance of movements.  
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Appendix I. Model Equations. 
 
For individuals in each OA, the force of infection 𝛬(𝑡) is given by:  
Where:  

 
With 

𝛽I = 𝑛𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒	𝑡𝑟𝑎𝑛𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 
	𝛽P = 𝑑𝑎𝑦𝑡𝑖𝑚𝑒	𝑡𝑟𝑎𝑛𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒		 

𝑎 = 𝑎𝑔𝑒	𝑐𝑙𝑎𝑠𝑠	(𝑌:	𝑦𝑜𝑢𝑛𝑔, 𝐸: 𝑒𝑙𝑑𝑒𝑟𝑙𝑦) 
𝑦 = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑖𝑛	𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑜𝑟	𝑚𝑖𝑙𝑑𝑙𝑦	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 

𝐼,,3\ = 𝑚𝑖𝑙𝑑𝑙𝑦	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑖𝑛	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑤𝑖𝑡ℎ	𝑎𝑔𝑒	𝑐𝑙𝑎𝑠𝑠	′𝑎′ 
𝐼,,3_ = 𝑠𝑒𝑣𝑒𝑟𝑒𝑙𝑦	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑖𝑛	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑤𝑖𝑡ℎ	𝑎𝑔𝑒	𝑐𝑙𝑎𝑠𝑠	′𝑎′ 

	𝑥,a = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑐𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	 
𝑎 = 𝑎𝑔𝑒	𝑐𝑙𝑎𝑠𝑠	(𝑌:	𝑦𝑜𝑢𝑛𝑔, 𝐸: 𝑒𝑙𝑑𝑒𝑟𝑙𝑦) 

𝑦 = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑖𝑛	𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑜𝑟	𝑚𝑖𝑙𝑑𝑙𝑦	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 
 
In the compartmental model are infection classes S (susceptible), E (exposed), IM (mildly 
infected), IS (severely infected), and H (hospitalised). Model equations for individuals residing in 
one OA (labelled i) and for age class A’ are therefore: 
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Where the transition rates are given by: 
 

• g for E to IM,  
• rM for IM to R,  
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• rS for IS to R,  
• rH for H to R 
• q for IM to IS,  
• rS for IS to R 
• h for IS to H,  

 
and the age-dependent mortality rates are given by the values of µ. 
  
NB: In order to improve the efficiency of the inference, movements of commuters between OAs were 
batched into groups of 5, with movements between OAs of fewer than five individuals per day, 
retained at a proportionate rate (i.e. 0.80 of all movements between OAs involving 4 individuals were 
retained, with the remaining discarded at random). While this reduces the overall network link 
density, the effect on transmission dynamics is expected to be small. We note that this means that 
interpretation of the combined βN and βD must be made with caution.  
 
Appendix II. Generate of commuter movement patterns 
 
From the current population estimates we draw the number of individuals whose primary residence 
is mapped onto OA25, with their age group. The smallest geographic unit provided publicly by NRS is 
the Intermediate Zone (IZ)26, of which there are approx. 1,200 units in Scotland each with a 
population of 2,500–6,000 household residents. We refine this, by synthetically distributing 
individuals down to Census OAs, of which there are approx. 46,000, each with a household 
population of 100–500. The total population of Scotland from this Census is 5438054 (Young, 
919,580; Adult 3,492,421; Elderly 1,026,053). Of the adults, 1,960,712 commute to work (reduced to 
647, 034 under lockdown (see details below).  
 
The data for assignment of individuals to work locations is drawn from the NRS Census Flows data27, 
Table WU01UK, which provides origin/destination workplace data for the population from the 2011 
census. This is also provided at IZ level, which we distribute to OA level.28 
The data for adjusting daily movements for the period after lockdown is taken from Google’s 
Community Mobility Reports29, which provide estimates of the proportionate decrease in mobility 
against a pre-lockdown baseline. 
The population and census data were retrieved on 1st April 2020, and the mobility data is updated 
every few days (last update 1st May 2020). 
 
1.iv Commuter patterns.  
 
To model commuter patterns between OAs we construct a commuter network consistent with 
commuter patterns and density of working age adults recorded in the Scotland census. 
 
1.iv.a Network patterns.  

                                            
25 Geographic units defined by the ONS: 

https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography 
26 NRS definition of geographic units: 

https://statistics.gov.scot/atlas/resource?uri=http://statistics.gov.scot/id/statistical-geography/S92000003 
27 Office for National Statistics, 2011 Census: Special Workplace Statistics (United Kingdom) [computer 

file]. UK Data Service Census Support. Downloaded from: https://wicid.ukdataservice.ac.uk 
28 https://www.scotlandscensus.gov.uk/variables-classification/sns-data-zone-2011  
29 Google Community Mobility Reports: https://www.google.com/covid19/mobility/ 



 

 

Sources from the 2011 Scotland census30 were combined to create a semi-synthetic network of 
work-related movements between households and workplaces. The census provides the number of 
individuals commuting between 'place of residence' and 'place of work' at a larger scale than the OA 
patches used in our model (Table ID WU01SC_IZ2011_Scotland). To generate commutes between the 
smaller 'OA' scale we assigned them a residence OA from within their 'place of residence' selected 
randomly with probability proportional to its working-age household population (Table ID LC1109SC), 
and a workplace OA from within their 'Place of work' selected randomly with probability 
proportional to the workforce population (Table ID WP101SCoa). 
 

1.iv.b Movement simulation. 

The purpose of the movement simulator (“moveSim”) is to provide population and movement input 
to SCoVMod. Input is in the form of a national population, drawn from census data, and a set of 
movements—where each individual travels in each time period—drawn from census flows data and 
modified by mobility data. We assume in this model that the pattern of commuting captures the 
most important features of . Also, after lockdown, this effect will be enhanced; with evidence from 
other countries of non-work activity occurring at both reduced volumes [REF google] and at a 
reduced spatial distance.31  

Population 

The first output of moveSim is a national population of individuals, each with a unique ID, a starting 
location, and an age group. At this point we also decide if each individual goes to work and where 
this occurs, assign them a work location. 

Algorithm 

The algorithm for assignment of individuals to home locations and age categories applies a unique ID 
for each individual in the national population. Home locations and age groups are assigned 
proportionately to the estimated OA population size. 
An individual’s workplace is assigned by distributing a proportion of the population of each location 
to each work location, weighted by the proportion of individuals from each home location in the 
census flows data who work in another location. For each origin 𝑜 and destination 𝑑 we assign a 
weight 𝑤/,� from the census flow data: 𝑤/,� =

��,�
��

 where 𝑛/,� is the total number of people who 

move from 𝑜 to 𝑑 to work, and 𝑡/  is the total number who move from origin 𝑜 to any location for 
work. 
We take the individuals of each home location if they are eligible to work (total 𝑛/); in this case we 
assume all individuals of adult age 16–65. Each destination is assigned to 𝑛/ × 𝑤/,� of these 
individuals. The individuals who remain have no assigned workplace—either they do not work, or 
they work within their home location. 

Output format 

The population generator of moveSim outputs two tables: the first with PersonID, Origin, Age as 
input to SCoVMod, and the second PersonID, Origin, Age, Worker, Destination as input to the 
moveSim movement simulator. PersonID is a unique integer identifier, Origin and Destination are 
string location identifiers, Age is a categorical identifier in {Young, Adult, Elderly}, and Worker a 
boolean indicating an eligible worker. 

                                            
30 Census data: https://www.scotlandscensus.gov.uk/ods-web/data-warehouse.htmla 
31 https://www.covid-19-mobility.org  



 

 

Movement 

The movement simulator produces input for SCoVMod, in the form of the set of individuals who 
move from each location in each time step of the simulation. In this case, we use two time steps per 
day. In the first, workers move to work, and in the second they return home. The simulation is 
generated stochastically, with a Poisson distributed number of workers moving from each origin to 
each destination per day, distributed according to the census flows and weighted by population as 
described above. The volume of movement is reduced uniformly across the population according to 
the proportional decrease provided by the mobility data. 
We also introduce an optimisation to reduce the number of movements that need to be handled by 
SCoVMod. The number of movements are trimmed to one in five and therefore daytime 
transmission rates are correspondingly assumed to be per 5 infected individuals. In simulation, there 
will be many OAs where fewer than five infected individuals would move to them in a given time 
step, and thus this process  of movement thinning would result in many locations not being exposed 
to infection that would have been with the full movement pattern. Given the low level of infection 
over the considered scenarios, we assume that the trade-off between increased transmission rate 
per movement, and reduced movements, will have negligible impact on outcomes.  

Algorithm 

For each day of the simulation we consider two time steps: a day step where individuals can move to 
their place of work, and a night step where those individuals move back to their home location. 
In each day step, we take each destination location 𝑑. Let 𝜆� be the number of eligible workers who 
may move to the destination location. For each day the sampled number who move 𝑠 is drawn from 
a Poisson distribution: 

𝑠 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆�)	
The sampled number of moves 𝑠 is then scaled according to the per cent change in mobility 𝑚 for 
the given day: 

𝑠- = ⌊𝑠(1 + (𝑚/100))⌋	
The number of moves is then trimmed 4 in 5 by drawing from a Binomial distribution: 

𝑠-� ∼ 𝐵(𝑠-,
1
5)	

If the sampled number of workers 𝑠-�  is less than or equal to the number of workers who may 
normally move to destination 𝑑, then those who move are sampled randomly from those who may 
normally move. However, if 𝑠-�  is greater than the number of workers who may normally move to 
𝑑, then the additional workers are drawn randomly from workers who have no assigned destination 
location. The sampled PersonIDs for each destination location are then collected for output, for each 
day. For each night of the simulation, the workers who moved in the day step are moved back to 
their origin location. 

Output format 

Each time step of the simulation is output in JSON format for input to SCoVMod. Each time step 
contains the set of destination location IDs, each containing the set of PersonIDs who move to them. 
 
Appendix III. Evaluation of validity of google mobility data in rural areas. 
 
Reduction in mobility is estimated based on data provided by Google.32 In the documentation, it is 
stated that “Location accuracy and the understanding of categorized places varies from region to 

                                            
32 https://www.google.com/covid19/mobility/index.html?hl=en 



 

 

region, so we don’t recommend using this data to compare changes between countries, or between 
regions with different characteristics (e.g. rural versus urban areas).”33 
 
In order to provide confidence that inclusion of reductions across regions is appropriate, we here 
assume that urban areas such as Glasgow and Edinburgh are likely to be well represented, but that 
rural areas may be less so. To check this, we compare an independent dataset on independent sailings 
and passenger numbers for ferry services run by Caledonian MacBrayne, who operate all ferry services 
in the west of Scotland. A comparison of data from 2019 to 2020 and to Google Mobility data, shows 
a strong fidelity between the two datasets, as well as a substantial reduction in activity at point of 
lockdown. The similarity prior to lockdown between 2019 and 2020 also suggests that patterns of 
increased summer activity are unlikely to have had strong influences on our assumptions regarding 
commuter movements, at least in this area.  

 
Figure III.i. Comparison of Google mobility data for Scotland to CalMac Ferry records. (L) Comparison to workplace mobility 
(R) Comparison to Recreation mobility. The comparison is relative to the mean value prior to lockdown on March 23rd, 2020.  
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Appendix VI. BBC Disclosure, 11th May 2020. Effect of early lockdown. 
 
An earlier version of this model which did not include consideration of health index, was used in the 
BBC One “Disclosure” programme aired at 8:30 pm on Monday, 11th May 2020. While the model 
results from the refined version are slightly different, the overall conclusions, and estimated number 
of deaths averted are highly consistent. Using the earlier fitted model, we also explore the impact of 
an early lockdown, starting at the beginning of the simulation period on March 8th, two weeks prior 
to the actual lockdown rate. In this version, if we assume that the reproduction rate declines below 
one from two weeks after the imposition of lockdown (the same assumption as for the baseline 
scenario), we predict on average 577 deaths (95% of simulations within 343 to 1141 deaths) by 26th 
April 2020, compared to 3259 (range 1736 to 6983) in the baseline scenario (observed number is 
2,795, assuming that all deaths occur in the week prior to the week the death is registered in).  
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