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SUMMARY

In morphological terms, ‘‘form’’ is used to describe
an object’s shape and size. In dogs, facial form is
stunningly diverse. Facial retrusion, the proximodis-
tal shortening of the snout and widening of the hard
palate is common to brachycephalic dogs and is a
welfare concern, as the incidence of respiratory
distress and ocular trauma observed in this class of
dogs is highly correlated with their skull form. Prog-
ress to identify the molecular underpinnings of facial
retrusion is limited to association of a missense
mutation in BMP3 among small brachycephalic
dogs. Here, we used morphometrics of skull isosur-
faces derived from 374 pedigree and mixed-breed
dogs to dissect the genetics of skull form. Through
deconvolution of facial forms, we identified quantita-
tive trait loci that are responsible for canine facial
shapes and sizes. Our novel insights include recogni-
tion that the FGF4 retrogene insertion, previously
associated with appendicular chondrodysplasia,
also reduces neurocranium size. Focusing on facial
shape, we resolved a quantitative trait locus on
canine chromosome 1 to a 188-kb critical interval
that encompasses SMOC2. An intronic, transpos-
able element within SMOC2 promotes the utilization
of cryptic splice sites, causing its incorporation into
transcripts, and drastically reduces SMOC2 gene
expression in brachycephalic dogs. SMOC2 disrup-
tion affects the facial skeleton in a dose-dependent
manner. The size effects of the associated SMOC2
haplotype are profound, accounting for 36% of facial
length variation in the dogs we tested. Our data bring
Current Biology 27, 1573–1584,
This is an open access article und
new focus to SMOC2 by highlighting its clinical impli-
cations in both human and veterinary medicine.

INTRODUCTION

The mammalian skull is an architectural wonder that illustrates

the intertwined relationship of form and function. The skull facil-

itates ingestion and respiration, provides protection for the brain,

and houses the visual, auditory, and olfactory systems. The skull

also functions in communication, defense, and reproductive be-

haviors. The pressures of natural selection have ensured that the

skull, a composite of bones, is multifunctional and is physically

matched to the environmental challenges it experiences.

Human intervention through domestication and artificial selec-

tionhas largelydisplaced the influenceof natural selectionon form

and function across domestic species. Themost profound effects

of human intervention across all terrestrial species can be

observed among skulls of the domestic dog, Canis familiaris [1].

Centuries of selective breeding has resulted in a broad radiation

in skull form [2] whereas restraints on function have been relaxed.

Some subpopulations of dogs display morphologies that are

highly reminiscent of human craniofacial anomalies, such as

brachycephaly-type craniosynostosis and midface hypoplasia.

In both species, brachycephaly and midface hypoplasia are

risk factors for developing severe morbidities, including respira-

tory [3], gastrointestinal [3, 4], ear- and eye-related morbidities

[3, 5], and neurological abnormalities [6]. Due to their rarity and

complex clinical presentation, most human patients with brachy-

cephaly will never receive a genetic diagnosis [7]. Conversely,

dogs represent abundant examples of morphologically varied

skull shapes.

Previous investigations of canine head shape using genome-

wide association studies (GWASs) and selective sweepmapping

highlighted an association between canine chromosome (CFA) 1

and brachycephaly [8–10]. In a binary design of brachycephalic
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versus non-brachycephalic pedigree dogs, Bannasch et al. [11]

established a 296-kb haplotype that encompassed the thrombo-

spondin 2 (THBS2) gene. This study did not identify causal

genetic variants, and the effects of this locus on gene expres-

sion were not assessed [11]. Elsewhere, measurements and

geometric morphometrics were used to quantify skull shape,

revealing quantitative trait loci (QTL) associated with brachy-

cephaly on CFA1, CFA5, CFA18, CFA30, and CFAX and a

missense variant in the bone morphogenetic protein 3 (BMP3)

gene on CFA32 [8, 9].

A limitation of the aforementioned studies is their discon-

nected use of phenotype and genotype data. Skulls from osteo-

logical collections were used to generate surrogate phenotypes

(e.g., ‘‘breed averages’’) for use in GWASs [8, 9]. Though this

approach has proven successful for detecting QTL, this study

design is poorly suited for identifying causal variation, which is

not necessarily fixed within breeds whose complex traits are of

interest. These breed average study designs cannot utilize

mixed-breed dogs that represent a significant portion of extant

canines and whose admixture can help separate the phenotypic

effects of complex traits. Finally, mapping complex traits, such

as canine brachycephaly, is confounded by the need to separate

the influences that size has on shape (i.e., allometry) [12].

Our goal was to identify the causal genetic variation respon-

sible for canine brachycephaly. Computed tomography (CT)

from 374 dogs that include 84 Kennel Club (UK) recognized

breeds and 83 mixed-breed dogs were analyzed using geomet-

ric morphometrics. Morphological descriptors, coupled with

individuals’ genotypes, were used to conduct genome-wide

association analyses of skull size and shape. Our analysis of

size-controlled skull shape identified a highly significant QTL

associated with canine brachycephaly on CFA1, as well as

numerous other suggestive associations. Focusing on the

CFA1 QTL, we defined a 187.7-kb critical interval common to

30 of 37 brachycephalic dogs. We resequenced 28 brachyce-

phalic dogs to approximately 30-fold depth and filtered polymor-

phisms within the critical interval against variants called in 319

other resequenced canid genomes. Among five variants that

were retained, we detected a long interspersed nuclear element

(LINE-1) within the SPARC-related modular calcium binding

(SMOC2) gene. Transcript analyses revealed alternative splice

isoforms that occur in the presence of the LINE-1, causing the

incorporation of a premature stop codon after the eighth exon

of SMOC2’s canonical 13-exon transcript. SMOC2mRNA levels

are downregulated in a dose-dependent manner with the LINE-1

element. Models of phenotypic effect indicate that the LINE-1

insertion explains up to 36% of facial retrusion observed in our

study. Endogenously expressed (mouse) Smoc2 is observed in

the pharyngeal arches during development, and the viscerocra-

nia of Smoc2-null mice are dysmorphic. Our data suggest that

SMOC2 dysfunction is responsible for canine brachycephaly.

Understanding the developmental role of SMOC2 could have

health implications in human and veterinary medicine.

RESULTS

Canine Phenotypes and GWASs
CTs of referral patients were reconstructed to produce three-

dimensional isosurfaces (Figure 1A). We placed 86 landmarks
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across skull isosurfaces to capture subtle morphological varia-

tion within and across patients (Figures 1B–1G and S1). This

study included 291 dogs that represented 84 breeds recognized

by the Kennel Club (UK). Eighty-three mixed-breed dogs were

also included (n = 374; Table S1). Landmarks were analyzed ac-

cording to morphological substructure (neurocranium, visceroc-

ranium, and mandible; Figure S1). Because form (size and shape

considered together) differs so greatly between dogs of various

breeds, we performed a Procrustes fit on the landmark data to

delineate size, followed by a regression of shape on size to re-

move the effects of allometry (size-related shape). Principal-

component (PC) analysis of distance matrices produced from

the regression residuals indicated that the first component,

PC1, accounted for 72.2% and 68.8% of variation in the viscer-

ocranium and mandible data, respectively. In the positive direc-

tion of viscerocranium PC1, many of the constituent bones of the

rostrum narrow mediolaterally and lengthen rostrocaudally.

These are shape changes consistent with dolichocephalic dog

breeds, such as the smooth collie (Figures 1B and 1F). The oppo-

site phenomena are true for negative PC1: the rostrum broadens

and shortens. This reflects the morphological changes that are

consistent with brachycephalic head conformation, such as

that seen in pugs (Figures 1E and 1F) [8, 13]. Individual breeds

cluster together by morphological trait (e.g., viscerocranium

shape and neurocranium size; Figure 1G), demonstrating the ac-

curacy of this approach to capture phenotypes and order dogs

based on their morphology.

Breeds can also be differentiated from one another by their

genomic structure (Figure S2) [9, 14, 15]. Set to k = 2,

STRUCTURE revealed the SNP ascertainment bias resulting

from the boxer-based dog assembly; breeds closely related to

the boxer including the bulldog, Dogue de Bordeaux, and Staf-

fordshire terrier, emerge as a ‘‘molosser’’ subpopulation [15].

Approximately one-third of the mixed-breed dogs in our

dataset also share this substructure. At k = 84, we observed

that the vast majority of owner-reported breed assignments

were accurate, though we note evidence of admixture among

some of the pedigree dogs.

GWASs of the neurocranium size, as well as viscerocranium

and mandible shapes, showed little genetic inflation (Figures 2

and S3). The analysis of neurocranium centroid size identified

32 associated SNPs, representing five genomic loci (Figure 2A;

Tables1andS2). In adistinction frompreviousGWASs that inves-

tigated body size [16], our data suggest that these loci modulate

skull size. This result is particularly surprising for theCFA18 locus,

whoseunderlyingFGF4 retrogene insertion is correlatedwith limb

shortening in breeds like the Dachshund but was not known to

reduce skull size, as suggested by our data [17].

Three SNPs on CFA1 at 55862036, 55983871, and 56132332

were associatedwith viscerocraniumPC1 (Figure 2B). GWASs of

mandible PC1 also highlighted the CFA1 QTL (Figure S3).

Critical Interval Determination
The CFA1 QTL of viscerocranium andmandible PC1 correspond

to a broad selective sweep observed among brachycephalic

pedigree dogs [8–11]. Focusing on the CFA1 QTL, we observed

16 SNPs in linkage disequilibrium (LD) (r2 > 0.2) with the

index SNP (BICF2P250912; viscerocranium PC1; p = 1.91 3

10�20; Figure 3A). First, we scanned for haplotype associations



Figure 1. Capturing Gross Interbreed and Subtle Intrabreed Variation in Skull Shape

(A) Three-dimensional isosurfaces of canine skulls are reconstructed from computed tomography (CT) scans of referral patients.

(B–E) Lateral images of a smooth collie (B; dolichocephalic), Bernese mountain dog (C; mesocephalic), border terrier (D; mesocephalic), and pug (E; brachy-

cephalic) with corresponding isosurfaces were included in our analysis. Head images and isosurfaces are not to scale.

(F) Lateral and dorsoventral views of the canine skull with wireframe diagrams superimposed, representing the changes in viscerocranium shape for negative and

positive viscerocraniumPC1 scores (‘‘ve PC’’). Red circles indicate surface landmarks of the rostrum. Connecting blue lines are added to provide visual context to

shape. Circles connected by black dotted lines indicate landmarks of the hard palate.

(G) Individual breed members cluster together when viscerocranium shape (viscerocranium PC1) is plotted against body size (neurocranium centroid). BMD-,

Bernese mountain dog; BORD, border collie; BORT, border terrier; BOX-, boxer; COLL, smooth collie; PUG-, pug; YORK, Yorkshire terrier.

See also Figures S1 and S2 and Table S1.
extending 1 Mb away from the associated SNPs. This revealed

a single region of highly significant haplotypes between

55,881,672 and 56,020,217 (Figure 3B). Genotypes correspond-

ing to this interval, in addition to �500-kb flanking regions, were

phased and ordered in rank of each subject’s viscerocranium

PC1 value (Figure 3C). As the distribution of viscerocranium

PC1 score is bimodal (Figure 2B, inset), with brachycephalic

dogs corresponding to PC1 values less than �0.2, we reasoned

that the critical interval underlying the CFA1 QTL should be

established using haplotypes from this subset of dogs, as con-

stituents are more likely to be fixed for the underlying causal

variant(s) (Figure 3C). This revealed a 187.7-kb critical interval

(extending between CFA1 55,850,299 and 56,037,676) defined

by a 12-SNP haplotype. The 12-SNP haplotype is highly

enriched among brachycephalic dogs and was identified

among 63 of 74 (85.1%) chromosomes—it is found in just 28
of 674 (4.2%) chromosomes of dogs with viscerocranium PC1

score > �0.2 (Table S3). Suggestive of an effect, the viscerocra-

nium PC1 value of these dogs was significantly different when

comparing haplotype carriers to non-carriers (Student’s t test;

p = 4.86 3 10�49). Curiously, we identified two Dogues de

Bordeaux that did not carry the associated haplotype on

CFA1. However, our STRUCTURE analysis revealed a higher de-

gree of admixture in these two Dogues de Bordeaux compared

to others of the same breed (Figure S2), suggesting that they

were cryptic outbreds. Moreover, both dogs had longer viscer-

ocrania than those Dogues de Bordeaux that were fixed for the

12-SNP haplotype (data not shown).

Eight of the twelve SNPs of this haplotype are located

within the SPARC-related modular calcium-binding protein 2

(SMOC2) gene (Figure 3C). The remaining four SNPs are spread

across �43 kb of sequence downstream of the gene.
Current Biology 27, 1573–1584, June 5, 2017 1575



Figure 2. Morphology of Skull Substruc-

tures Are Associated with Multiple QTL

Manhattan plots for neurocranium centroid size (A)

and viscerocranium PC1 GWASs (B). Red dashed

line (3.6 3 10�7) indicates threshold for multiple

testing with significant SNPs colored red. The

associated SNPs and candidate genes at each

locus are summarized in Table 1. Insets: skull

schematics indicate the region of landmarks used

for datasets. Expected (x axis) and observed

(y axis) �log10(p) values are plotted for all SNPs

(black circles) and pruned SNPs (gray circles).

Histograms depict the frequency (y axis) of vis-

cerocranium PC1 and neurocranium centroid,

respectively. See also Figures S1 and S3 and

Table S2.
Variant Filtering Analysis
Focusing on the CFA1 critical interval, we analyzed 187,377 bp

of whole-genome sequence. In total, we called 3,674 SNPs/

INDELS and 162 structural variants (Table 2). After hard filtering

(Table S4), four SNPs and one structural variant remained as

candidates for further consideration (Table 2; see STAR

Methods). All five remaining variants are located within introns

of the SMOC2 gene. The structural variant is a 1,531-bp inser-

tion, which is present in the dog reference genome (which was

generated from a brachycephalic breed—a boxer). The SNPs

and insertion appear in complete linkage disequilibrium (data

not shown). Though we cannot formally exclude their contribu-

tion to brachycephaly, none of the SNPs fell in regions of high

conservation across species (Figure S4). Thus, their potential

to cause brachycephaly was poorly supported.

Conversely, the insertion is a 30 truncated fragment of a class 1

long interspersed nuclear element (LINE-1). LINE-1 insertions

are known to be mutagenic in both man and dogs [18, 19]. The

LINE-1 insertion within SMOC2 is fragmented, possibly due to

incomplete insertion through ‘‘abortive’’ retrotransposition, and

includes an intact 30 UTR and 1,302 bp of ORF2 (Figure 4A)

[20]. We genotyped the LINE-1 fragment in subjects used in

our GWASs. The LINE-1 fragment is found among 91.5%

of chromosomes of brachycephalic dogs (viscerocranium

PC1 < �0.2) compared to only 2.1% of chromosomes of non-

brachycephalic dogs (Figure 4B). The LINE-1 fragment appears

to have no correlation with neurocranium centroid size (Fig-
Table 1. SNPs Showing Genome-wide Significance with Skull Datas

Dataseta Chromosome Index SNP

Viscerocranium 1 BICF2P250912

Mandible 1 BICF2P250912

Neurocranium 3 TIGRP2P56799_rs8666557

Neurocranium 7 BICF2S23352941

Neurocranium 10 G580f46S240

Neurocranium 15 BICF2P355320

Neurocranium 18 BICF2S23615757

See also Table S2. For intragenic SNPs, genes are denoted by asterisks.
aOnly index SNPs are listed. A complete list of significant SNPs is shown in
bDerived alleles are shown after ancestral alleles
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ure 4C). Grouping individuals based on the number of LINE-1

fragment alleles they carried, we observe an additive effect for

all normalized linear measurements taken from skull isosurfaces,

with the greatest effect observed on the length of the palatine

bone (Figures 4D and 4E).

LINE-1 retrotransposons are known to alter local gene expres-

sion through a variety of mechanisms that affect transcription

[21–23]. Therefore, we quantified the relative expression levels

of SMOC2 mRNA at both the 30 and 50 ends of the transcript.

A comparable additive effect on SMOC2 expression was

observed across the transcript (Figure 4F). Subjects that were

homozygous for the SMOC2 LINE-1 allele had an�5-fold reduc-

tion in total SMOC2 mRNA expression compared to individuals

without a copy of the allele. This observation was independently

confirmed by RNA sequencing. Subjects that were homozygous

carriers for the LINE-1 allele similarly had a significant reduction

in total SMOC2 mRNA levels when compared to non-carriers

(fold change = 3.1; Figure 4G). Three additional genes showed

significantly reduced expression, including two novel genes

for long non-coding RNAs (ENSCAFG00000039143 and

ENSCAFG00000035778) and the protein-coding urotensin 2B

(UTS2B) gene. None of these genes are located on CFA1. No

changes in expression of the neighboring genes to SMOC2,

THBS2, and DACT2 (dishevelled-binding antagonist of beta-

catenin 2) were observed (Figure 4G). Non-carriers of the

SMOC2 LINE-1 exclusively transcribed the ‘‘canonical’’ 13-

exon transcript of SMOC2 (Figure 4H). Homozygous carriers
ets

Position Candidate Gene Alleleb p Value

55,983,871 SMOC2* G > A 1.91 3 10�20

55,983,871 SMOC2* G > A 8.43 3 10�10

91,103,945 LCORL/NCAPG G > T 3.64 3 10�9

43,719,549 SMAD2* A > G 5.71 3 10�13

8,183,593 HMGA2 C > T 3.06 3 10�15

41,257,020 IGF1* C > T 1.73 3 10�19

20,272,961 FGF4 retrogene A > C 3.31 3 10�8

Table S2.



Figure 3. Regional Association and Critical Interval Determination of the CFA1 Viscerocranium QTL

(A) SNP associations with viscerocranium PC1 are shown for�1Mb on either side of significant SNPs on CFA1. SNPs are colored depending on the degree of LD

(r2) with the index SNP (BICF2P250912; 1.91 3 10�20).

(B) Ten-SNP sliding window haplotype association.

(C) Genotypes between 55,881,672 and 56,020,217 (including �500 kb of flanking sequence) were phased and ranked by their viscerocranium PC1 value. Only

haplotypes from brachycephalic dogs (viscerocranium PC1 % �0.2; see Figure S3) were considered. Haplotypes are paired by subject and ranked by viscer-

ocranium PC1 value. Alleles colored light gray match the consensus haplotype; dark gray alleles are variant. A 187.7-kb critical interval is defined by at least three

meiotic recombinations (indicated above by black bar). The 12 SNPs that constitute the associated haplotype (red bar) are distributed within or up to �44 kb

downstream of SMOC2. Black arrows indicate 3 of 37 dogs that have a homozygous variant haplotype. These dogs are registered as two Dogues de Bordeaux

and a Chihuahua. The red arrow indicates a Japanese Chin that is homozygosed for a recombinant haplotype within the critical interval.

See also Figures S2 and S6 and Table S3.
for the SMOC2 LINE-1 similarly transcribed the canonical tran-

script; however, in addition to this, these individuals also tran-

scribed multiple different isoforms of SMOC2 (Figure 4H). Using

primers designed against exon 8 and the LINE, we identified

three isoforms present across all individuals homozygous for

the LINE-1 element and a further three rarer isoforms present
in homozygous or heterozygous carriers of the LINE-1 element

(Figure S5; Table S5). All isoforms incorporate the LINE-1

element and differing lengths of preceding intron into the

SMOC2mRNA following exon 8. Each of the different splice sites

within intron 8 are preceded by an adenine and guanine residue

(AG)—an almost invariant characteristic of mammalian splice
Current Biology 27, 1573–1584, June 5, 2017 1577



Table 2. Variant Filtering within the Viscerocranium Critical

Interval

Software GATK/SnpSft Pindel

Variant type SNPs/INDELS Structural variants

Base pairs analyzed 187,377 187,377

Pre-filtering 3,674 162

Post-filtering 4 1

Filtering criteria are listed in Table S4. See also Figure S4 and Table S4.
acceptors (Table S5) [24, 25]. All alternative isoforms are pre-

dicted to introduce a premature stop codon following exon 8.

It is unclear whether the alternative truncated isoforms are trans-

lated; however, we predict the protein products would shear

within the thyroglobulin-like domain and would have no extracel-

lular calcium-binding domain (Figure 4I) [26].

In exon 8, we observed a SNP that encodes a silent C/T sub-

stitution at position 55,939,143. Interestingly, both the C and T

alleles are present across ‘‘ancestral’’ populations that do not

carry the LINE-1 element. However, the LINE-1 element is only

observed in the presence of exon 8’s T allele (Figure 4H). This

suggests that the C/T variant predates the insertion of the

LINE-1 variant. In heterozygous subjects, the C/T variant

enabled us to quantify the allele-specific transcriptional activity

of SMOC2. Transcripts from a Yorkshire terrier dog that was ho-

mozygous ancestral for the SMOC2 allele (lacking the LINE-1),

but heterozygous for the C/T allele, had an allele percentile ratio

of 46:54, suggesting that transcripts from both alleles are equally

represented (Table S6). In contrast, two Cavalier King Charles

spaniels that were heterozygous for both the SMOC2 LINE-1

and the C/T allele had allele percentile ratios of�75:25, which in-

dicates that the DNA allele with the LINE-1 element contributes

fewer of the SMOC2 reads (Table S5). A lower abundance of

transcripts incorporating the LINE-1 element may suggest that

they are targeted by nonsense-mediated decay, decreased tran-

scriptional activity, or both.

Size-Effect Modeling on Skeletal Size and Shape
We were interested in modeling phenotypic effects of size and

shape using the skull-derived QTL described by our study and

elsewhere [8, 9, 16, 27]. The derived allele frequencies of associ-

ated markers of SMOC2, CFA30 QTL, BMP3, IGF1, and STC2

differ significantly according to viscerocranium PC1 (Figure 5A).

These five genotypes were applied as explanatory variables in a

linear stepwisemodel for the viscerocranium PC1. Alone, the ho-

mozygous-derived alleles of the SMOC2 LINE-1 explain the

largest amount of viscerocranium variation (R2 = 36%), with

markers at the CFA30 QTL, BMP3 IGF1, and STC2 explaining

28%, 12%, 4%, and 4%, respectively (Figure 5B). These vari-

ances are not additive but infer the maximum potential contribu-

tion of each genotype. Together, 45% of viscerocranium’s

proportion of variation explained (PVE) is explained by these

five genotypes. IGF1, IGF1R, SMAD2, FGF4, GHR(1), GHR(2),

CFA30 QTL, BMP3, STC2, HMGA2, and the LCORL/NCAPG lo-

cus are significantly associated with neurocranium centroid size

(Figure 5C). The best model for explaining variation in neurocra-

nium centroid size selected a subset of genotypes (SMAD2,

IGF1, FGF4, IGF1R, and the LCORL/NCAPG locus), which
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together explain up to 68% PVE (Figure 5D). Individually, the ho-

mozygous-derived alleles of SMAD2, HMGA2, GHR(1), IGF1,

FGF4, STC2, IGF1R, the LCORL/NCAPG locus, GHR(2), the

CFA30 locus QTL, and BMP3 explain up to 47%, 37%, 31%,

29%, 28%, 22%, 21%, 14%, 10%, 8%, and 6%of neurocranium

centroid size variation, respectively (Figure 5D).

Species Conservation of SMOC2

Morpholino knockdown of zebrafish smoc2 suggests it regulates

head development [28, 29]. To determine whether SMOC2 func-

tion is evolutionary conserved across other species, we first

assessed its regional conservation by aligning the locus to the

human genome. Mouse and chick sequence conservation was

strikingly reduced compared to other species, including the

dog (Figure S6A). Despite this, embryonic expression in chick

and mice is observed in the first pharyngeal arch (Figure S6)

[30]. Notably, the cranial neural crest streams into the first arch

to populate the primordia that will give rise to the maxilla, as

well as other constituents of the viscerocranium and mandible

[31–33]. Previous to our study, Smoc2�/� mice were generated

and phenotyped for the International Mouse Phenotyping Con-

sortium (IMPC). Although these mice are no longer maintained,

adults used for phenotyping were viable and fertile. We assessed

archived radiographs of Smoc2�/� (n = 8) and strain-specific

controls (n = 4; Figure S7A). Principal-component analysis of

the whole head revealed similar morphological variation to that

which we observed in dogs. Murine PC1 variation showed

mediolateral widening and rostrocaudal shortening of the skull

(Figure S7B). PC1 values clustered differentially by genotype

(Smoc2 knockout versus control; p < 0.001; Figure S7C); how-

ever, no such segregation was observed for sex (Figure S7D).

Total palate length was assessed from lateral radiographs. The

palate was significantly shorter in transgenic mice (Student’s

t test; p = 0.0011), though not when allometry was removed (Fig-

ure S7E; data not shown). Given this observation and the fact

that the locus is poorly conserved might suggest species-level

differences in Smoc2 function. Nonetheless, our mouse data,

as well as additional bone phenotypes described by the IMPC,

indicate that disruption of Smoc2 is sufficient to adversely affect

craniofacial biology.

DISCUSSION

Studies, including ours, continue to demonstrate the effective-

ness of dog breeders at propagating aesthetic traits [8, 17, 34].

This cultivation of morphologies predated the formation of breed

clubs. The selective sweep and association of theCFA1QTLwith

brachycephaly was recognized in the early days of dog GWASs;

however, confirmation of the underlying causative genetics re-

mained elusive. Unlike QTL mapping, fine mapping approaches

based on haplotype comparisons are confounded by the occa-

sional ‘‘outlier’’ within a breed that is not fixed for or does not

even carry the genetic variant that drives a trait that is common

to other members of its breed. Moreover, whereas dog traits

(e.g., brachycephaly) that are common across subsets of breeds

are often driven by identity-by-descent genetics, this phenome-

non is not absolute. To avoid these issues, aswell as leverage the

genetics ofmixed-breed dogs,webuilt a study populationwhose

phenotypes and genotypes were derived individually.



Figure 4. Characterization of the Intronic LINE-1 Retrotransposon within SMOC2

(A) Schematic of a full-length canine LINE-1 element consisting of 50 UTR/30 UTR, open reading frames 1 and 2 (ORF1/ORF2), and a polyadenylated tail (AAAAn)

flanked by target site duplications (TSD). The structural variant within SMOC2 is 1,506 bp in length (in addition to a poly(A) tail) and has a 99.1% match to the

consensus sequence of canine LINE-1.

(B and C) Distribution of the SMOC2 LINE-1 fragment for (B) viscerocranium PC1 and neurocranium centroid size (C) across all individuals.

(D) Ventral-dorsal view of the canine hard palate and its constituent bones.

(E) Length andwidth of the canine palate and constituent bones normalized by the neurocranium centroid for homozygous ancestral (white), heterozygotes (gray),

and homozygous-derived (black) individuals for the SMOC2 LINE-1 insertion.

(F) Relative expression levels of SMOC2 both up- and downstream of the LINE insertion (<0.05 *; <0.01 **; <0.001 ***). Error bars represent SEM.

(G) RNA sequencing (RNA-seq) data reveal four genes with significant changes in mRNA levels (red) for homozygous SMOC2 LINE-1 carriers compared to non-

carriers (three each). Neighboring genes to SMOC2 are colored green.

(H) Schematic of genomic DNA (gDNA) spanning exon 8 and 9 of SMOC2, including the LINE-1 fragment. mRNA transcripts include the canonical splicing of

SMOC2 (i) followed by the three most abundant SMOC2 isoforms when the LINE-1 element is present (ii–iv). All isoforms have premature stop codons prior to

exon 9. C/T indicates the SNP in exon 8. Schematic is not to scale.

(I) Exons 1–13 of SMOC2 contribute to a follistatin-like module (FS), thyroglobulin-like modules (TY), a unique SMOC module, an extracellular calcium-binding

module (EC), and a signal peptide (SP).

See also Figures S5 and S7 and Tables S5 and S6.
We distilled the CFA1 locus to reveal a haplotype overlapping

with SMOC2 as the major contributor to brachycephaly. We

strongly suspect that the insertion of a truncated transposable

element intoSMOC2 ismost likely causal; however, we acknowl-

edge the limitations of our study. The dog’s long-range linkage

disequilibrium prevented us from disassociating four SNPs that

are in linkage disequilibrium with the LINE. Whether or not these

variants have functional impacts cannot be dismissed. Second,
whereas our transcriptional analysis demonstrates differential

expression and missplicing of SMOC2 that are associated with

the LINE insertion, we cannot say whether other genes are

affected by this haplotype in cis. Due to limited tissue availability,

we restricted our differential expression to testis, a tissue where

SMOC2 was assumed to be highly expressed based on evi-

dence from other species [35, 36]. In the future, additional tis-

sues will need to be tested to determine whether genes in cis
Current Biology 27, 1573–1584, June 5, 2017 1579



Figure 5. Size Effects of the Viscerocranium Shape and Neurocranium Centroid Size QTL

(A and C) Boxplots depicting the distribution of normalized size-corrected viscerocranium PC1 (A) and normalized neurocranium centroid size (C) for 11 loci

linked with body size and skull shape. Distributions are subdivided by genotype —homozygous ancestral (AA), heterozygotes (AD), and homozygous derived

(DD). *** denotes p < 0.001 in Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov tests.

(B and D) A stepwise linear regressionmodel for viscerocranium PC1 (B) and neurocranium centroid (D) determined the best explanatory model for ancestral (left)

and derived (right) genotypes for each positional candidate.
are differentially expressed in association with the haplotype we

describe.

Modeling phenotypic variance was enhanced by the inclusion

of mixed-breed dogs, whose admixed genomes and lack of

standardization helped separate QTL that would otherwise co-

segregate. Alone, SMOC2 explains up to 38% of viscerocranium

PC1 variance. Whereas clearly the locus has a large effect size,

our study is currently underpowered to exhaustively detect QTL

that modulate brachycephaly or, more broadly, shape of the
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facial skeleton. This is underscored by the fact that we have

not explained canine brachycephaly as it occurs in two Dogues

de Bordeaux and an Affenpinscher (the latter was used in our

whole-genome sequencing); none showed evidence of a selec-

tive sweep on CFA1 nor did they carry the associated 12-SNP

haplotype. Moreover, our GWASs failed to replicate the

CFA32/BMP3 and CFA30 QTL associations described previ-

ously [8]. A likely explanation for this is the modest numbers of

small, brachycephalic breeds in our study, as well differing



demographics. Our study is lacking in Brussel Griffon,

Pekingese, Boston terriers, and Japanese Chin—all brachyce-

phalic breeds whose members are typically homozygous for

the missense variant in BMP3.

By necessity, we cannot explain the genetics of skull shape

without addressing confounding effects of allometry, which is

essential in a species whose size differential can exceed 40-

fold. We used subjects’ neurocranium centroid size to remove

the influences of allometry from viscerocranium shape variation,

as well as to explore the genetics of neurocranium size itself.

A genomic association of neurocranium centroid size identified

five loci. Four of these loci were previously identified in body

size studies across a variety of species: SMAD family member 2

(SMAD2) [9, 16, 27], high-mobility group AT-hook 2 (HMGA2)

[9, 16, 27, 37–39], insulin-like growth factor 1 (IGF1) [16, 27],

and the ligand-dependent nuclear receptor corepressor-like

(LCORL)/non-SMC condensin I complex, subunit G (NCAPG)

locus [16, 40–42]. Our effect size data point to their relative

contribution to neurocranium centroid size; the largest effect

size is explained by the putative enhancer deletion at the

SMAD2 locus [27]. The association of neurocranium centroid

size with the fibroblast growth factor 4 (FGF4) retrogene was un-

expected. Parker et al. [17] first identified an FGF4 retrogene

associated with canine asymmetric chondrodysplasia, a form

of dwarfism that gives breeds like the Dachshund its short

legs. The same locus was associated with body weight [16],

though this could be explained by reduced leg mass. Our results

indicate that the bone-based structure of the neurocranium is

also reduced in size by the retrogene. Similarly, Hayward et al.

[16] identified an association to stature and body weight in

proximity to SMOC2 [16]. Because a high proportion of the

brachycephalic dog population are low-to-medium weight

breeds (Figure 1G), the interpretation of their association is un-

clear. In our study, we see no evidence that the SMOC2 locus

modulates neurocranium centroid size (Figures 2A and 5C)

and, by extension, skeletal size. However, we cannot exclude

the possibility that theQTL noted by the authors affect soft tissue

mass or appendicular bone length.

SMOC2 belongs to the BM-40 (SPARC) family of matricellular

proteins, which contain an extracellular calcium-binding module

and a follistatin-like domain. SMOC2 is distinguished from the

BM-40 family by the addition of two thyroglobulin domains and

a novel domain unique to the SMOC subgroup [26]. The

calcium-binding module facilitates the binding of multiple

collagen types [43] and the interaction with several growth fac-

tors [44, 45], which permits the proteins to function in cell adhe-

sion, cell proliferation, and matrix turnover (reviewed by [46]).

The BM-40 family was first identified in bone (where SMOC2

has been shown to be differentially expressed across the growth

plate) but has since been found in a wide variety of other tissues

[38, 47–49]. Mounting evidence suggests the SMOC2 plays an

important role in craniofacial form across species. Knockdown

of zebrafish smoc2 causes severe craniofacial hypoplasia [28],

a process that may act by downregulating target genes of

bone morphogenetic protein (BMP) signaling [50]. In chick em-

bryos, Smoc2 is prominently expressed in the pharyngeal

arches. Murine craniofacial development undergoes dynamic

growth between embryonic days 10.5 and 12.5. Throughout

this window, Smoc2 is shown to have differential temporal
expression in the frontonasal process and maxillary/mandibular

prominences [47]—tissues that give rise to mandible and viscer-

ocranial structures. Our geometric morphometric analysis of

radiographs indicate the skulls of Smoc2-null mice cluster

distinctly from wild-type, though a detailed understanding of

the shape changes that occur in null mice will require three-

dimensional analysis (Figure S7). It is intriguing that numerous

copy-number variants spanning SMOC2 are associated with hu-

man phenotypes, including brachycephaly, hydrocephalus, long

face (vertical), and hypertelorism [51]. Point mutations in SMOC2

were identified independently in patients with dentin dysplasia

type I syndrome, whose hallmarks include severe oligodontia

and microdontia [29, 52]. Finally, deleterious mutations in

SMOC2 were identified in DECODE [53] and Generation Scot-

land biobanks (M.L.B., unpublished data).

Leveraging the craniofacial diversity of dogs, we set out to

discover candidate genes involved in human craniofacial anom-

alies, particularly craniosynostosis and midface hypoplasia. Our

results suggest that SMOC2 should be screened as a candidate

for diagnosis. Not to be ignored, the role of SMOC2 dysfunction

and the associated haplotype we defined need further explora-

tion as they concern the health of brachycephalic dogs. As our

canine skull project continues to grow, we will explore the role

of SMOC2 and other skeletal QTL with comparative health

implications.
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S. Friedenberg, E. Furrow, U. Giger, C. Hitte, M. Hytönen, H. Lohi, C. Mellersh,

J. Mickelson, A. Oberbauer, S. Schmutz, and C. Wade) for sharing whole-

genome sequencing data from control dogs; N. Russel for providing skull

photography; and C. Muller, K. McLellan, M. John, and K. Thomas for

providing animal photography. Additional thanks are given to G. Faulkner,

D. FitzPatrick, I. Jackson, M. McGrew, H. Sang, A. Balic, and R. Harrington

for their helpful suggestions. The mouse Smoc2 riboprobe was generously

provided by J. Rainger. J.J.S. is a University of Edinburgh Chancellor’s

fellow and received funding from the Wellcome Trust-University of Edin-

burgh Institutional Strategic Support Fund (ISSF2). The Roslin Institute re-

ceives strategic funding from the Biotechnology and Biosciences Research

Council: J.J.S. (BB/J004235/1 and BB/P013759/1) and M.D. (BB/J004316/1

and BB/P013732/1). J.J.S. and M.N. received funding from the Albert Heim

Foundation (grant 101 13.03.2012). T. Leeb received funding from the Albert

Heim Foundation (grant 105 09.10.2012). Funding for DECIPHER was pro-

vided by the Wellcome Trust.

Received: October 19, 2016

Revised: March 14, 2017

Accepted: April 27, 2017

Published: May 25, 2017

REFERENCES

1. Stockard, C.R. (1941). The Genetic and Endocrinic Basis for Differences in

Form and Behaviour (Philadelphia: The Wistar Institute of Anatomy and

Biology).

2. Wayne, R.R. (2001). Phylogeny and origin of the domestic dog. In The

Genetics of the Dog, A. Ruvinsky, and J. Sampson, eds. (CABI), pp. 1–14.

3. Harvey, R.G., and ter Haar, G. (2016). Brachycephalic obstructive airway

syndrome. In Ear, Nose and Throat Diseases of the Dog and Cat, R.G.

Harvey, and G. ter Haar, eds. (Devon: CRC Press), pp. 290–293.

4. Poncet, C.M., Dupre, G.P., Freiche, V.G., Estrada, M.M., Poubanne, Y.A.,

and Bouvy, B.M. (2005). Prevalence of gastrointestinal tract lesions in 73

brachycephalic dogs with upper respiratory syndrome. J. Small Anim.

Pract. 46, 273–279.

5. Sanchez, R.F., Innocent, G., Mould, J., and Billson, F.M. (2007). Canine

keratoconjunctivitis sicca: disease trends in a review of 229 cases.

J. Small Anim. Pract. 48, 211–217.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Canis familiaris Various veterinary

referral hospitals

N/A

Chemicals, Peptides, and Recombinant Proteins

Trizol Life Technologies 15596026

RNAlater Life Technologies AM7020M

Critical Commercial Assays

CanineHD Whole-Genome Genotyping SNP BeadChip Illumina WG-440-1001

Truseq DNA nano kit Illumina FC-121-4001

TruSeq Stranded mRNA Library Prep Kit High

Throughput

Illumina RS-122-2103

Illumina TruSeq Nano DNA library prep HT SeqLab 20000903

Deposited Data

RNA and DNA sequencing data This paper ENA: PRJEB17926, http://www.ebi.ac.uk/ena

Dog reference genome (CanFam3.1, ENSEMBL

release-85)

ENSEMBL http://www.ensembl.org/index.html

Dog genotypes This paper http://dx.doi.org/10.5061/dryad.cq612

Dog genetic variants Dog Biomedical Variant

Database Consortium

(tosso.leeb@vetsuisse.

unibe.ch)

N/A

Experimental Models: Organisms/Strains

Mouse: Smoc2tm1.1(KOMP)Vlcg The Jackson Laboratory https://www.jax.org

Mouse embryos Roslin Institute Biological

Research Facility

N/A

Chicken embryos NARF http://www.narf.ac.uk

Oligonucleotides

gDNA targeted primer: SMOC2 Forward: GGCAGGGG

ATGGGGAAGGCT

This paper N/A

gDNA targeted primer: SMOC2 Reverse (ancestral):

ACTGTGTGCTTTGCCCAAACTCA

This paper N/A

gDNA targeted primer: SMOC2 Reverse (derived):

TGCCCATAAAGTTCAGGGTCCACT

This paper N/A

gDNA targeted primer: IGF1 Forward: CACTGATCCAG

AAGAATCCAACT

[27] N/A

gDNA targeted primer: IGF1 Reverse: CAAAGAACCA

TGTAAGCCTATTTGT

[27] N/A

gDNA targeted primer: STC2 Forward: ATACAATCC

ACCTAGTGTCCCCAACCAT

[27] N/A

gDNA targeted primer: STC2 Reverse: GGCCACAGC

CCCTTTAAT

[27] N/A

gDNA targeted primer: SMAD2 Forward: GCTTCAAG

TCAGTGTGCTCC

This paper N/A

gDNA targeted primer: SMAD2 Reverse: CGTATTTGT

TGCTGCTGGGT

This paper N/A

gDNA targeted primer: SMAD2 Reverse: AGAGCCCTG

ACATCATGACC

This paper N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

gDNA targeted primer: FGF4 retrogene Forward: CACA

CAGATGGACCATGAAA

This paper N/A

gDNA targeted primer: FGF4 retrogene Reverse

(ancestral): TTTTAGATTCCGCACATGAG

This paper N/A

gDNA targeted primer: FGF4 retrogene Reverse

(derived): CTCTTTGAACTTGCACTCCTC

This paper N/A

gDNA targeted primer: BMP3 Forward: GATACAGG

AGATTGTGCCAAATGGGTAA

[8] N/A

gDNA targeted primer: BMP3 Reverse: CTCCTGGTGG

AAATCGTCAGTCTATCTG

[8] N/A

gDNA targeted primer: CFA30 QTL Forward: AGGGA

TAGTCCAGCTCCAAGGCTGGTAT

This paper N/A

gDNA targeted primer: CFA30 QTL Reverse: CTCTTTC

AGGCTTCCCCAGTTGTACCTA

This paper N/A

gDNA targeted primer: IGF1R Forward: AGATGACCAA

CCTCAAGGATATT

[27] N/A

gDNA targeted primer: IGF1R Reverse: AGTCCTGC

CATCCCACAAAG

[27] N/A

gDNA targeted primer: GHR(1) & GHR(2) Forward:

GCTCTCCGTTAAATCAAGCTG

[27] N/A

gDNA targeted primer: GHR(1) & GHR(2) Reverse:

AAGGAGAGAGGTGTTGTTGGT

[27] N/A

cDNA targeted primer: SMOC2 Exon 2/3 Forward:

TGCTTATCGAGGAAATTGCAG

This paper N/A

cDNA targeted primer: SMOC2 Exon 2/3 Reverse:

TGGGATGAACACCTGCTGTA

This paper N/A

cDNA targeted primer: SMOC2 Exon 10/11 Forward:

CGCGCTCTCTACCGACAT

This paper N/A

cDNA targeted primer: SMOC2 Exon 10/11 Reverse:

GGGGTCGGGTTCTGAGAG

This paper N/A

cDNA targeted primer: MRPS7 Forward: AGTGCAG

GGAGAAGAAGCAC

[54] N/A

cDNA targeted primer: MRPS7 Reverse: CAGCAGCTC

GTGTGACAACT

[54] N/A

Software and Algorithms

Read alignment: bwa v0.7.8 [55] https://sourceforge.net/projects/bio-bwa/files/

Variant caller: GATK v3.7 [56] http://gatkforums.broadinstitute.org/gatk

WGS utility: Picard http://broadinstitute.

github.io/picard

https://github.com/broadinstitute/picard/releases

Structural variant caller: Pindel v0.2.3 [57] http://gmt.genome.wustl.edu/packages/pindel/

Annotation: SNPsift v4.0 [58] http://snpeff.sourceforge.net/SnpSift.html

Effect prediction: HaploReg v4.1 [59] N/A

Effect prediction: CADD v3.1 [60] N/A

Utility: PLINK v1.07 [61] http://zzz.bwh.harvard.edu/plink/

Utility: PLINK v1.90 beta [62] https://www.cog-genomics.org/plink2

Admixture assessments: STRUCTURE v2.3 [63] http://web.stanford.edu/group/pritchardlab/

structure_software/release_versions/v2.3.4/html/

structure.html

Linear mixed model: GEMMA v0.94.1 [64] http://www.xzlab.org/software.html

Phasing: SHAPEIT v2.r837 [65] https://mathgen.stats.ox.ac.uk/genetics_software/

shapeit/shapeit.html
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Graphics and data analysis: R v3.3.0 The Comprehensive

R Archive Network

(CRAN)

https://cran.r-project.org

RNaseq alignment: STAR v2.5.1b [66] https://github.com/alexdobin/STAR

RNaseq analysis: DESeq2 v1.12.14 [67] https://bioconductor.org

RNaseq analysis: RSubread v1.22.3 [68] https://bioconductor.org

Data visualization: Integrative Genomics Viewer

v2.3.59

[69] http://software.broadinstitute.org/software/igv/

DICOM reconstruction and landmarking:

CheckPoint v2016.11.21.0711 WIN x64

Stratovan https://www.stratovan.com

ImageJ v1.50 g [70] https://imagej.nih.gov/ij/

Geometric morphometrics: MorphoJ v1.06c [71] http://www.flywings.org.uk/morphoj_page.htm

Other

KOD Xtreme HotStart Polymerase Merck 71975-3

Saliva sample collection kit Peformagene PG-100

Lysing matrix D 2mL tube MPBio 116913050

RNeasy Minikit QIAGEN C-74104

SuperScript III First- Strand Synthesis SuperMix Life Technologies 11752050
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeffrey

Schoenebeck (jeff.schoenebeck@roslin.ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Participants. In total, 374 canine patients (212 male, 162 female) were recruited from four veterinary practices across the

United Kingdom and Switzerland: The Hospital for Small Animals, The University of Edinburgh, UK; Davies Veterinary Specialists,

Hertfordshire, UK; Small Animal Medicine and Surgery Group, The Royal Veterinary College, Hertfordshire, UK; The Division of

Clinical Radiology, The Vetsuisse Faculty University of Bern, Switzerland. Canine participants were admitted to referral practices

for diagnostic imaging. Owners provided breed identity (when known) and consent for their dogs’ participation in our study. Spiral

or sequential computed tomography (CT) scans were acquired at one or two millimeter slice thickness. All scans were reviewed

by a radiologist to ensure that pathologies or injuries did not compromise exterior skull integrity. All 374 individuals are represented

in the viscerocranium and neurocranium dataset. Due to mandibular pathologies, a subset of 355 individuals were represented in the

mandibular dataset. Participants were aged twenty-four months or above at the time of diagnostic imaging and represent eighty-four

Kennel Club (UK) recognized breeds and eighty-three mixed-breed individuals (Table S1). Use of referral patient diagnostic imaging

and biomaterial was reviewed and approved by the R(D)SVS’s Veterinary Ethics Review Committee.

Mouse (C57BL/6) and chick (Isa Brown) embryos used for histology were surplus biomaterial harvested prior to this study. Mouse

and chick work was conducted in accordance to animal use guidelines of the Roslin Institute under UK Home Office license and with

ethical review.

METHOD DETAILS

DNA Extraction and Microarray Genotyping
Genomic DNA (gDNA) was extracted from residual diagnostic whole blood stored in EDTA at 4�C,�20�C or at�80�C; discarded soft

tissue following surgery stored at �20�C; or oral saliva swabs (Performagene, DNA Genotek). DNA was extracted from whole blood

using an adaption of Boodram salt-based protocol (http://www.protocol-online.org/prot/Protocols/Extraction-of-genomic-DNA-

from-whole-blood-3171.html). For the gDNA extraction from soft tissue 750 mL extraction buffer (10 mM Tris pH 8.0, 10 mM

EDTA pH 8.0, 1% SDS, 100 mMNaCl), 80 mL 0.5 M Dithiothreitol and 15 mL Protein K solution (20mg/mL, Ambion, Life Technologies)

were added to approximately 4 mm3 of tissue. Following overnight digestion, 270 mL saturated NaCl solution was added and centri-

fuged. One mL absolute ethanol was added to 500 mL supernatant to precipitate the gDNA. gDNA was spun and following centrifu-

gation, washed with 70% ethanol. All gDNA samples were resuspended and stored in TE buffer 4�C. Oral mucosa swabs were

processed in accordance with the Performagene protocol (http://www.dnagenotek.com/US/pdf/PD-PR-083.pdf). Genotypes
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were produced using the 170,000 SNP Illumina CanineHD Whole-Genome Genotyping BeadChip by Edinburgh Genomics, UK.

Genotype calls were mapped to CanFam3.1 coordinates (Broad, September 2011).

RNA Extraction and qPCR
Testeswereselected formessengerRNA (mRNA)extractiondue to theunattainability of appropriateembryonic-stage tissueor healthy

adult tissues in the dog. SMOC2was assumed to be expressed in the testis based on evidence in other species [35, 36] (http://www.

proteinatlas.org/). gDNA and mRNA were extracted from testes snap frozen and stored at �80�C in RNAlater. gDNA was extracted

from tissue following the ThermoFisher Scientific protocol (http://www.thermofisher.com/uk/en/home/references/protocols/

nucleic-acid-purification-and-analysis/rna-protocol/genomic-dna-preparation-from-rnalater-preserved-tissues.html). gDNA sam-

plesweregenotyped for theSMOC2LINE-1 insertion toallow targetedextractionofRNA from testes. Fromour screening,we identified

nine subjects: 3 ancestral (1 Italian greyhound, 1whippet, 1Yorkshire terrier), 3 heterozygous (1Papillon, 2Cavalier KingCharles span-

iels), and 3 homozygous derived (1 bulldog, 1 French bulldog, 1 pug). For RNA extractions, 1mL chilled Trizol was added to 100mg of

testes in amatrix D lysis tube and homogenized using a FastPrep for two 20 s intervals at 4m/s. Sampleswere incubated at room tem-

perature for 5min following homogenization. Next, 200 mL 1-bromo-3-chloropropane (BCP)was added to each sample, shaken vigor-

ously for 15 s and incubated at room temperature for 3 min. Samples were centrifuged for at 12,000G for 15min at 4�C and the upper

aqueous phase was subsequently transferred to a fresh tube. RNA was cleaned using the QIAGEN RNeasy Minikit following

and including optional steps provided in the RNeasy Mini Kit Part 1 protocol. A DNase step was not used.

Complementary DNA (cDNA) was produced from 1 mg total RNA using the SuperScript III First-Strand Synthesis SuperMix

(Invitrogen) following the product protocol with oligo(dT) primers. Primers for target genes were designed to be intron-spanning using

the online Roche design center. Primers for reference housekeeping genes were acquired from previously published work [54]. Rela-

tive expression profiles for SMOC2 were determined using the Roche Life Sciences probe-based real-time qPCR assay with a

LightCycler 480 system (Roche). All RNA profiles were analyzed in triplicate for both technical and biological replicates. Expression

of target genes were normalized with mitochondrial ribosomal protein S7 (MRPS7). Relative quantification levels were corrected for

primer efficiency [72].

Sequencing Library Preparations
The integrity of genomics DNA and total RNA samples were verified by Agilent Tapestation. All RNA samples scored RIN values

greater than 8.0. DNA and RNA Library preparation and sequencing services were provided by Edinburgh Genomics (UK). Briefly,

DNA libraries were prepared using either SeqLab TruSeq Nano DNA library prep HT or Illumina Truseq DNA nano DNA library

kits. Paired-end libraries sequences on the Illumina HiSeq 2500 had an average insert size of 550 bp and read length of 125 bp.

Paired-end DNA libraries sequenced on the HiSeq X platform had an average insert size of 450 bp and 150 bp read length.

For RNA, TruSeq stranded libraries were prepared from nine preparations of total RNA according to manufacturer’s protocol. Bar-

coded libraries were sequenced on three lanes of an Illumina HiSeq 4000, producing 150 bp paired-end reads (96 million + 96 million

reads per library).

Histology
Whole-mount Smoc2 in situ hybridization was performed per Nieto et al. (1996) [73].

QUANTIFICATION AND STATISTICS

Morphometrics
3D reconstructions of anonymised canine skull CT scans were generated in Stratovan Checkpoint software (v2014.11.28.0324) and

anatomical substructures (cranium and mandible) of resulting isosurfaces were manually landmarked by a single analyst (Figure S1).

Breed designations were hidden from the analyst and CTs were analyzed in a random order. Fifty-six cranial and thirty mandibular

landmarks were selected to capture morphological variation. Raw 3D coordinates of cranial and mandibular subsets were reformat-

ted using custom R (v3.2.5) scripts and analyzed using MorphoJ (v1.06c) [71]. The cranial landmark subset was further divided into

neurocranium (n = 18) and viscerocranium (n = 25) landmarks (Figure S1). A generalized Procrustes fit was used to scale, transpose,

and rotate landmarks [74]. A by-product of the Procrustes fit is the centroid size (the amount of scaling used in the fit). The neuro-

cranium centroid size was used as a proxy of body size (see below). In order to remove allometric effects, a regression consisting

of 10,000 permutations using the neurocranium’s centroid size (independent variable) was run on the viscerocranium and mandible

symmetric coordinates. A covariance matrix was calculated from the regression residuals. Decomposition of the distance matrix by

principal component analysis (PCA) produced components; each principal component (PC) explains successively smaller tranches

of morphological variation. Viscerocranium PC1 (without allometry), mandible PC1 (without allometry) and neurocranium centroid

size were subsequently used as phenotypic outcomes for GWAS.

Lateral and dorsoventral radiographs of four C57BL/6JN background controls and eight Smoc2�/� mice (Smoc2tm1.1(KOMP)Vlcg

allele produced by The Jackson Laboratory, USA) aged thirteen weeks were landmarked in ImageJ (v1.50 g) [70] using the

PointPicker plugin (male = 5, female = 7). The raw 2D coordinates for nine lateral and fifteen dorsoventral landmarks were

exported from ImageJ and analyzed in MorphoJ. Lateral and dorsoventral landmarks were analyzed as using the same approach.

A generalized Procrustes fit was used to create a best fit for landmarks. A covariance matrix was calculated using the Procrustes
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distance matrix of the whole head prior to PCA. A two-tailed Student’s t test assessed PC1 distribution for sex and Smoc2 back-

ground. Principal component plots were generated using a custom R script. Additional phenotypic detail regarding these mice

are available form the International Mouse Phenotyping Consortium (http://www.mousephenotype.org).

Genotype Analyses
PLINK (v1.07) [61] was used to remove SNPs with a minor-allele frequency < 0.05 and individuals with > 0.1 missing markers.

Genotypes were prephased using SHAPEIT (v2.r837) [65] using default parameters that includes 500 states. Imputations were

done with Minimac2 (2014.9.15) using 40 rounds and 1,000 states. Post-processing by fcGene (v1.0.7) removed genotypes with

R2 < 0.3 and minor allele frequency < 0.05. In total, 139,260 SNPs remained for analysis.

Population structure was assessed using STRUCTURE (v2.3) [63]. GEMMA (v0.94.1) [64], which incorporates a kinship matrix in its

implementation of univariate linear mixed models, was used to perform genome-wide association tests. Sex and up to ten principal

components (generated from SNP genotype data in PLINK v1.9 [62]) were used as covariates – ten covariates for neurocranium and

five for viscerocranium andmandible. The number of PCs included was determined by evaluation of Q-Qplots. p values generated in

the association tests were used for Q-Qplots; using the aforementioned parameters returned l values (genomic inflation factors)

within the range 0.954 – 1.000 (Figure 2 and Figure S4). Index SNPs as well as markers in linkage disequilibrium (r2 > 0.2) to them

were pruned from the dataset using PLINK and GEMMA association analyses were re-run. Observed p values plotted concordantly

with expected values, indicating minimal population-based inflation. A Bonferroni correction was used to determine a significance

threshold for association tests (-log10[0.05/139,260] = 6.44). Manhattan plots and Q-Qplots were generated using custom

scripts in R.

Fine Mapping
Haplotype association testing was done using ten SNP sliding windows across �1 megabase (Mb) flanking regions of significant

SNPs in canine chromosome (CFA) 1. SHAPEIT was used to phase genotypes. Haplotypes for the region of interest were ordered

by individual viscerocranium PC1 score and colored by genotypes that matched the consensus sequence. The borders of the critical

interval were defined by a minimum of three meiotic recombination events across the brachycephalic individuals with a viscerocra-

nium PC1 < �0.2.

Variant Filtering
Eight brachycephalic dogs were resequenced on an Illumina HiSeq 2000 (Edinburgh Genomics, UK) to approximately 14-33X depth.

Another thirty dogswere resequenced using the Illumina HiSeq X platform to > 40X depth. Resulting paired-end readswere aligned to

the reference genome (CanFam3.1, Broad September 2011) using bwa (v0.7.8) [55]. SNPs and small INDEL variants within the critical

interval (CFA1:55850299-56037676) were called using GATK (v3.7) [56, 75, 76]. We compared our variant calls to those of three-hun-

dred and four dogs and wild canids made available to the DBVCD consortium members and an additional five canids (1 Basenji,

4 wolves) from the DoGSD database [77, 78]. Variants were hard filtered using SnpSift (v4.0) [58]. Because their deep coverage

and large insert sizes (> 450bp), we used our thirty-eight re-sequenced dogs to call structural variants; variants were called using

Pindel (v0.2.3) [57]. Filtering criteria for both SNPs/INDELS and large structural variants were determined by the presence of the

twelve SNP haplotype across selected brachycephalic and dolichocephalic individuals whose skull phenotypes were confirmed

(Table S4). Our filtering criteria were based on five logical assumptions. First, genomes from brachycephalic dogs with the twelve

SNP haplotype were assumed to carry, or to be fixed for, the causal variant(s) within the CFA1 critical interval. Second, haplotype

sharing at the CFA1 locus suggests identity-by-descent; therefore brachycephalic dogs with the twelve SNP haplotype inherited

the same causal variant(s) from a common ancestor. Third, as the dog assembly is based on the genome of a boxer (a brachycephalic

dog that was fixed for the twelve SNP haplotype), the causal variant(s) could be present in the reference assembly as reference

allele(s). Fourth, we expected that the causal variant(s) are derived and therefore absent from wild canid populations such as

dogs’ ancestor, the gray wolf. Lastly, dolichocephalic dogs without the associated twelve SNP haplotype cannot carry the causal

variant(s).

qRT-PCR
All RNA profiles were analyzed in triplicate for both technical and biological replicates. Expression of target genes were normalized

with mitochondrial ribosomal protein S7 (MRPS7). Relative quantification levels were corrected for primer efficiency [72].

RNA-Seq
FASTQ files were aligned using STAR to the dog reference genome (CanFam3.1, ENSEMBL release-85). Annotated junctions were

downloaded from ENSEMBL (ftp.ensembl.org/pub/release-85/gtf/canis_familiaris/Canis_familiaris.CanFam3.1.85.gtf.gz). Align-

ment was performed in two passes as instructed by the user manual. Using Picard tools (http://broadinstitute.github.io/picard),

read groups were added, bam files weremerged by sample, and reads weremarked for duplicates. Using featureCounts, an analysis

tool of the RSubread package (RSubread v1.22.3 installed on R v3.3.0), we quantifiedmapped reads to genes. Differential expression

analysis was conducted at the gene level using the R package DESeq2 (v1.12.4) by comparing homozygous SMOC2 LINE-1 carriers
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compared to non-carriers (three each). Detection of allelic imbalance was made possible by two of the three heterozygous dogs

described above (1 Cavalier King Charles spaniel, 1 Papillon), as these dogs were also heterozygous for the C/T SNP in exon 8

(chr1:55939143) of SMOC2.

Generation Scotland: Scottish Family Health Study
We used whole exome sequences from the Generation Scotland: Scottish Family Health Study (GS:SFHS). Study participants had

been originally recruited for population-based studies of complex traits. Details regarding the design and sequencing of human par-

ticipants is described elsewhere. We extracted all sequence variants in SMOC2 which passed GATK recalibration [56]. Putative

regulatory elements and functional roles of the extracted variants were assessed by the ENCODE-based prediction tool HaploReg

(v4.1) [59]. To assess the predicted consequences of the variants, we examined their C-scores, which indicate the ‘deleteriousness’

of a given mutation using combined annotation dependent depletion (CADD, v3.1) [60].

DATA AND SOFTWARE AVAILABILITY

DNA-seq and RNA-seq data are publicly available at the European Nucleotide Archive under primary accession number ENA:

PRJEB17926. Genotypes are available at Dryad Digital Repository (http://datadryad.org). The Dryad Digital Repository DOI for

the genotype data reported in this paper is Dryad: 10.5061/dryad.cq612.

ADDITIONAL RESOURCES

DECIPHER
This study makes use of data generated by the DECIPHER community. A full list of centers who contributed to the generation of the

data is available from https://decipher.sanger.ac.uk and via email from decipher@sanger.ac.uk. The DECIPHER database was

searched for variants in human SMOC2 with reported craniofacial phenotypes.
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